Spark Queries #
To use Iceberg in Spark, first configure Spark catalogs.
Iceberg uses Apache Spark’s DataSourceV2 API for data source and catalog implementations. Spark DSv2 is an evolving API with different levels of support in Spark versions:
Feature support | Spark 3.0 | Spark 2.4 | Notes |
---|---|---|---|
SELECT |
✔️ | ||
DataFrame reads | ✔️ | ✔️ | |
Metadata table SELECT |
✔️ | ||
History metadata table | ✔️ | ✔️ | |
Snapshots metadata table | ✔️ | ✔️ | |
Files metadata table | ✔️ | ✔️ | |
Manifests metadata table | ✔️ | ✔️ |
Querying with SQL #
In Spark 3, tables use identifiers that include a catalog name.
SELECT * FROM prod.db.table -- catalog: prod, namespace: db, table: table
Metadata tables, like history
and snapshots
, can use the Iceberg table name as a namespace.
For example, to read from the files
metadata table for prod.db.table
, run:
SELECT * FROM prod.db.table.files
content | file_path | file_format | spec_id | partition | record_count | file_size_in_bytes | column_sizes | value_counts | null_value_counts | nan_value_counts | lower_bounds | upper_bounds | key_metadata | split_offsets | equality_ids | sort_order_id |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | s3:/…/table/data/00000-3-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 01} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> c] | [1 -> , 2 -> c] | null | [4] | null | null |
0 | s3:/…/table/data/00001-4-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 02} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> b] | [1 -> , 2 -> b] | null | [4] | null | null |
0 | s3:/…/table/data/00002-5-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 03} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> a] | [1 -> , 2 -> a] | null | [4] | null | null |
Querying with DataFrames #
To load a table as a DataFrame, use table
:
val df = spark.table("prod.db.table")
Catalogs with DataFrameReader #
Iceberg 0.11.0 adds multi-catalog support to DataFrameReader
in both Spark 3.x and 2.4.
Paths and table names can be loaded with Spark’s DataFrameReader
interface. How tables are loaded depends on how
the identifier is specified. When using spark.read.format("iceberg").path(table)
or spark.table(table)
the table
variable can take a number of forms as listed below:
file:/path/to/table
: loads a HadoopTable at given pathtablename
: loadscurrentCatalog.currentNamespace.tablename
catalog.tablename
: loadstablename
from the specified catalog.namespace.tablename
: loadsnamespace.tablename
from current catalogcatalog.namespace.tablename
: loadsnamespace.tablename
from the specified catalog.namespace1.namespace2.tablename
: loadsnamespace1.namespace2.tablename
from current catalog
The above list is in order of priority. For example: a matching catalog will take priority over any namespace resolution.
Time travel #
To select a specific table snapshot or the snapshot at some time, Iceberg supports two Spark read options:
snapshot-id
selects a specific table snapshotas-of-timestamp
selects the current snapshot at a timestamp, in milliseconds
// time travel to October 26, 1986 at 01:21:00
spark.read
.option("as-of-timestamp", "499162860000")
.format("iceberg")
.load("path/to/table")
// time travel to snapshot with ID 10963874102873L
spark.read
.option("snapshot-id", 10963874102873L)
.format("iceberg")
.load("path/to/table")
Spark does not currently support usingoption
withtable
in DataFrameReader commands. All options will be silently ignored. Do not usetable
when attempting to time-travel or use other options. Options will be supported withtable
in Spark 3.1 - SPARK-32592.
Time travel is not yet supported by Spark’s SQL syntax.
Incremental read #
To read appended data incrementally, use:
start-snapshot-id
Start snapshot ID used in incremental scans (exclusive).end-snapshot-id
End snapshot ID used in incremental scans (inclusive). This is optional. Omitting it will default to the current snapshot.
// get the data added after start-snapshot-id (10963874102873L) until end-snapshot-id (63874143573109L)
spark.read()
.format("iceberg")
.option("start-snapshot-id", "10963874102873")
.option("end-snapshot-id", "63874143573109")
.load("path/to/table")
Currently gets only the data fromappend
operation. Cannot supportreplace
,overwrite
,delete
operations. Incremental read works with both V1 and V2 format-version. Incremental read is not supported by Spark’s SQL syntax.
Spark 2.4 #
Spark 2.4 requires using the DataFrame reader with iceberg
as a format, because 2.4 does not support direct SQL queries:
// named metastore table
spark.read.format("iceberg").load("catalog.db.table")
// Hadoop path table
spark.read.format("iceberg").load("hdfs://nn:8020/path/to/table")
Spark 2.4 with SQL #
To run SQL SELECT
statements on Iceberg tables in 2.4, register the DataFrame as a temporary table:
val df = spark.read.format("iceberg").load("db.table")
df.createOrReplaceTempView("table")
spark.sql("""select count(1) from table""").show()
Inspecting tables #
To inspect a table’s history, snapshots, and other metadata, Iceberg supports metadata tables.
Metadata tables are identified by adding the metadata table name after the original table name. For example, history for db.table
is read using db.table.history
.
As of Spark 3.0, the format of the table name for inspection (catalog.database.table.metadata
) doesn’t work with Spark’s default catalog (spark_catalog
). If you’ve replaced the default catalog, you may want to useDataFrameReader
API to inspect the table.
History #
To show table history, run:
SELECT * FROM prod.db.table.history
+-------------------------+---------------------+---------------------+---------------------+
| made_current_at | snapshot_id | parent_id | is_current_ancestor |
+-------------------------+---------------------+---------------------+---------------------+
| 2019-02-08 03:29:51.215 | 5781947118336215154 | NULL | true |
| 2019-02-08 03:47:55.948 | 5179299526185056830 | 5781947118336215154 | true |
| 2019-02-09 16:24:30.13 | 296410040247533544 | 5179299526185056830 | false |
| 2019-02-09 16:32:47.336 | 2999875608062437330 | 5179299526185056830 | true |
| 2019-02-09 19:42:03.919 | 8924558786060583479 | 2999875608062437330 | true |
| 2019-02-09 19:49:16.343 | 6536733823181975045 | 8924558786060583479 | true |
+-------------------------+---------------------+---------------------+---------------------+
This shows a commit that was rolled back. The example has two snapshots with the same parent, and one is not an ancestor of the current table state.
Snapshots #
To show the valid snapshots for a table, run:
SELECT * FROM prod.db.table.snapshots
+-------------------------+----------------+-----------+-----------+----------------------------------------------------+-------------------------------------------------------+
| committed_at | snapshot_id | parent_id | operation | manifest_list | summary |
+-------------------------+----------------+-----------+-----------+----------------------------------------------------+-------------------------------------------------------+
| 2019-02-08 03:29:51.215 | 57897183625154 | null | append | s3://.../table/metadata/snap-57897183625154-1.avro | { added-records -> 2478404, total-records -> 2478404, |
| | | | | | added-data-files -> 438, total-data-files -> 438, |
| | | | | | spark.app.id -> application_1520379288616_155055 } |
| ... | ... | ... | ... | ... | ... |
+-------------------------+----------------+-----------+-----------+----------------------------------------------------+-------------------------------------------------------+
You can also join snapshots to table history. For example, this query will show table history, with the application ID that wrote each snapshot:
select
h.made_current_at,
s.operation,
h.snapshot_id,
h.is_current_ancestor,
s.summary['spark.app.id']
from prod.db.table.history h
join prod.db.table.snapshots s
on h.snapshot_id = s.snapshot_id
order by made_current_at
+-------------------------+-----------+----------------+---------------------+----------------------------------+
| made_current_at | operation | snapshot_id | is_current_ancestor | summary[spark.app.id] |
+-------------------------+-----------+----------------+---------------------+----------------------------------+
| 2019-02-08 03:29:51.215 | append | 57897183625154 | true | application_1520379288616_155055 |
| 2019-02-09 16:24:30.13 | delete | 29641004024753 | false | application_1520379288616_151109 |
| 2019-02-09 16:32:47.336 | append | 57897183625154 | true | application_1520379288616_155055 |
| 2019-02-08 03:47:55.948 | overwrite | 51792995261850 | true | application_1520379288616_152431 |
+-------------------------+-----------+----------------+---------------------+----------------------------------+
Files #
To show a table’s data files and each file’s metadata, run:
SELECT * FROM prod.db.table.files
content | file_path | file_format | spec_id | partition | record_count | file_size_in_bytes | column_sizes | value_counts | null_value_counts | nan_value_counts | lower_bounds | upper_bounds | key_metadata | split_offsets | equality_ids | sort_order_id |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | s3:/…/table/data/00000-3-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 01} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> c] | [1 -> , 2 -> c] | null | [4] | null | null |
0 | s3:/…/table/data/00001-4-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 02} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> b] | [1 -> , 2 -> b] | null | [4] | null | null |
0 | s3:/…/table/data/00002-5-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 03} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> a] | [1 -> , 2 -> a] | null | [4] | null | null |
Manifests #
To show a table’s file manifests and each file’s metadata, run:
SELECT * FROM prod.db.table.manifests
+----------------------------------------------------------------------+--------+-------------------+---------------------+------------------------+---------------------------+--------------------------+--------------------------------------+
| path | length | partition_spec_id | added_snapshot_id | added_data_files_count | existing_data_files_count | deleted_data_files_count | partition_summaries |
+----------------------------------------------------------------------+--------+-------------------+---------------------+------------------------+---------------------------+--------------------------+--------------------------------------+
| s3://.../table/metadata/45b5290b-ee61-4788-b324-b1e2735c0e10-m0.avro | 4479 | 0 | 6668963634911763636 | 8 | 0 | 0 | [[false,null,2019-05-13,2019-05-15]] |
+----------------------------------------------------------------------+--------+-------------------+---------------------+------------------------+---------------------------+--------------------------+--------------------------------------+
Note:
- Fields within
partition_summaries
column of the manifests table correspond tofield_summary
structs within manifest list, with the following order:contains_null
contains_nan
lower_bound
upper_bound
contains_nan
could return null, which indicates that this information is not available from files' metadata. This usually occurs when reading from V1 table, wherecontains_nan
is not populated.
Inspecting with DataFrames #
Metadata tables can be loaded in Spark 2.4 or Spark 3 using the DataFrameReader API:
// named metastore table
spark.read.format("iceberg").load("db.table.files").show(truncate = false)
// Hadoop path table
spark.read.format("iceberg").load("hdfs://nn:8020/path/to/table#files").show(truncate = false)