Spark
This guide will get you up and running with Apache Iceberg™ using Apache Spark™, including sample code to highlight some powerful features. You can learn more about Iceberg's Spark runtime by checking out the Spark section.
- Docker-Compose
- Creating a table
- Writing Data to a Table
- Reading Data from a Table
- Adding A Catalog
- Next Steps
Docker-Compose🔗
The fastest way to get started is to use a docker-compose file that uses the tabulario/spark-iceberg image which contains a local Spark cluster with a configured Iceberg catalog. To use this, you'll need to install the Docker CLI as well as the Docker Compose CLI.
Once you have those, save the yaml below into a file named docker-compose.yml
:
version: "3"
services:
spark-iceberg:
image: tabulario/spark-iceberg
container_name: spark-iceberg
build: spark/
networks:
iceberg_net:
depends_on:
- rest
- minio
volumes:
- ./warehouse:/home/iceberg/warehouse
- ./notebooks:/home/iceberg/notebooks/notebooks
environment:
- AWS_ACCESS_KEY_ID=admin
- AWS_SECRET_ACCESS_KEY=password
- AWS_REGION=us-east-1
ports:
- 8888:8888
- 8080:8080
- 10000:10000
- 10001:10001
rest:
image: tabulario/iceberg-rest
container_name: iceberg-rest
networks:
iceberg_net:
ports:
- 8181:8181
environment:
- AWS_ACCESS_KEY_ID=admin
- AWS_SECRET_ACCESS_KEY=password
- AWS_REGION=us-east-1
- CATALOG_WAREHOUSE=s3://warehouse/
- CATALOG_IO__IMPL=org.apache.iceberg.aws.s3.S3FileIO
- CATALOG_S3_ENDPOINT=http://minio:9000
minio:
image: minio/minio
container_name: minio
environment:
- MINIO_ROOT_USER=admin
- MINIO_ROOT_PASSWORD=password
- MINIO_DOMAIN=minio
networks:
iceberg_net:
aliases:
- warehouse.minio
ports:
- 9001:9001
- 9000:9000
command: ["server", "/data", "--console-address", ":9001"]
mc:
depends_on:
- minio
image: minio/mc
container_name: mc
networks:
iceberg_net:
environment:
- AWS_ACCESS_KEY_ID=admin
- AWS_SECRET_ACCESS_KEY=password
- AWS_REGION=us-east-1
entrypoint: >
/bin/sh -c "
until (/usr/bin/mc config host add minio http://minio:9000 admin password) do echo '...waiting...' && sleep 1; done;
/usr/bin/mc rm -r --force minio/warehouse;
/usr/bin/mc mb minio/warehouse;
/usr/bin/mc policy set public minio/warehouse;
tail -f /dev/null
"
networks:
iceberg_net:
Next, start up the docker containers with this command:
You can then run any of the following commands to start a Spark session.
Note
You can also launch a notebook server by running docker exec -it spark-iceberg notebook
.
The notebook server will be available at http://localhost:8888
Creating a table🔗
To create your first Iceberg table in Spark, run a CREATE TABLE
command. Let's create a table
using demo.nyc.taxis
where demo
is the catalog name, nyc
is the database name, and taxis
is the table name.
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
val schema = StructType( Array(
StructField("vendor_id", LongType,true),
StructField("trip_id", LongType,true),
StructField("trip_distance", FloatType,true),
StructField("fare_amount", DoubleType,true),
StructField("store_and_fwd_flag", StringType,true)
))
val df = spark.createDataFrame(spark.sparkContext.emptyRDD[Row],schema)
df.writeTo("demo.nyc.taxis").create()
from pyspark.sql.types import DoubleType, FloatType, LongType, StructType,StructField, StringType
schema = StructType([
StructField("vendor_id", LongType(), True),
StructField("trip_id", LongType(), True),
StructField("trip_distance", FloatType(), True),
StructField("fare_amount", DoubleType(), True),
StructField("store_and_fwd_flag", StringType(), True)
])
df = spark.createDataFrame([], schema)
df.writeTo("demo.nyc.taxis").create()
Iceberg catalogs support the full range of SQL DDL commands, including:
Writing Data to a Table🔗
Once your table is created, you can insert records.
import org.apache.spark.sql.Row
val schema = spark.table("demo.nyc.taxis").schema
val data = Seq(
Row(1: Long, 1000371: Long, 1.8f: Float, 15.32: Double, "N": String),
Row(2: Long, 1000372: Long, 2.5f: Float, 22.15: Double, "N": String),
Row(2: Long, 1000373: Long, 0.9f: Float, 9.01: Double, "N": String),
Row(1: Long, 1000374: Long, 8.4f: Float, 42.13: Double, "Y": String)
)
val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema)
df.writeTo("demo.nyc.taxis").append()
Reading Data from a Table🔗
To read a table, simply use the Iceberg table's name.
Adding A Catalog🔗
Iceberg has several catalog back-ends that can be used to track tables, like JDBC, Hive MetaStore and Glue.
Catalogs are configured using properties under spark.sql.catalog.(catalog_name)
. In this guide,
we use JDBC, but you can follow these instructions to configure other catalog types. To learn more, check out
the Catalog page in the Spark section.
This configuration creates a path-based catalog named local
for tables under $PWD/warehouse
and adds support for Iceberg tables to Spark's built-in catalog.
spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.7.0\
--conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \
--conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog \
--conf spark.sql.catalog.spark_catalog.type=hive \
--conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.local.type=hadoop \
--conf spark.sql.catalog.local.warehouse=$PWD/warehouse \
--conf spark.sql.defaultCatalog=local
spark.jars.packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.7.0
spark.sql.extensions org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.spark_catalog org.apache.iceberg.spark.SparkSessionCatalog
spark.sql.catalog.spark_catalog.type hive
spark.sql.catalog.local org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.local.type hadoop
spark.sql.catalog.local.warehouse $PWD/warehouse
spark.sql.defaultCatalog local
Note
If your Iceberg catalog is not set as the default catalog, you will have to switch to it by executing USE local;
Next steps🔗
Adding Iceberg to Spark🔗
If you already have a Spark environment, you can add Iceberg, using the --packages
option.
Note
If you want to include Iceberg in your Spark installation, add the Iceberg Spark runtime to Spark's jars
folder.
You can download the runtime by visiting to the Releases page.
Learn More🔗
Now that you're up an running with Iceberg and Spark, check out the Iceberg-Spark docs to learn more!